QAQSAT[TrOnsForm]

TRANS
FORM

Max/MSP Introducion ::
création audio et visuelle en temps réel
Cours 3 : introduction vidéo

ENSEIGNANT:
Alexandre Quessy

2008/2009

Société des arts technologiques
1197 boulevard Saint-Laurent

C.P. 1083 Succursale Desjardins
Montréal (Québec) H5B 1C2

2
a;vSAT[TrcnsForm]

DESCRIPTION DU COURS

Descriptif :

Une formation de 18 heures en trois cours animée par Alexandre Quessy. Les cours
permettent de s’introduire a I’utilisation de Max/MSP, un logiciel de création audio et
visuelle en temps réel. La formation compléte est divisée en trois sessions de 6 heures :
introduction générale, introduction a l'audio (la composante « MSP» du logiciel),
introduction a la vidéo avec Jitter.

Contenu :

Prendre connaissance des possibilités offertes par le dataflow;
Comprendre le flot des données entre les objets dans Max/MSP;
Apprendre a concevoir des programmes interactifs;

Se familiariser avec les principaux objets de création audio et musicale;
Se familiariser avec la création vidéo, visuelle et d’images générées;
Expérimenter la capture vidéo et la catpure sonore en direct;

Matériel requis :

Aucun matériel n’est requis. Les étudiants sont invités a apporter leur ordinateur avec le
logiciel Max 5 installé (http://www.cycling74.com). Max 5 est compatible avec Mac OS
X et Windows. Il est gratuit pour les 30 jours, et il est possible par la suite de 'acheter.
Des forfaits spéciaux sont disponibles pour les étudiants : il suffit d'envoyer I'image de
notre carte étudiante par courriel a la compagnie pour en bénéficier.

Cours 2 : Introduction vidéo

Objectifs :

Se familiariser avec les notions de I’environnement de programmation Jitter qui permet
un contrdle en temps réel de la vidéo et de la 3D;

Comprendre aux notions de bases de la vidéo tel que les pixels, la couleur, les matrices,
les effets visuels, la mémoire tampon et le rendu OpenGL.

Prérequis : Max/MSP Introduction

Durée : 6 heures

a;vSAT[TrcnsForm]

Théorie

Les bases de Max/MSP : objets et messages

Lorqu'on utilise une patche, on peut cliquer sur les boites de message, les boutons et les
chiffres. Quand on dévérouille la patche, il est possible de modifier les connexions entre
les objets et les autres ¢léments dans la patche. On peut également ajouter d'autres
¢léments. C'est ce qu'on peut appeler le mode d'édition.

Les boites de message ont comme couleur de fond le gris ou une autre couleur. Les
objets, eux, ont toujours le fond blanc.

Les connexions peuvent communiquer des messages, du signal sonore ou des matrices
Jitter. Les lignes qui communiquent du signal audio sont jaune et noir, et celles qui
communiquent des matrices sont vert et noir. Les autres sont simplement plus minces.

Les entrées des objets sont situées sur le dessus de leur boite rectangulaire. Leur sorties
sont situées en-dessous. Les messages vont donc de haut en bas. Pour connecter deux
objets ou boites de messages, il faut étre en mode d'édition et cliquer sur la sortie d'un
objet, puis déplacer la sortie au-dessus de I'entrée d'une autre objet en gardant le bouton
de la sortie enfoncé. Lorsque I'on reladche le bouton de la souris, une nouvelle connexion
est née !

Dans la boite d'un objet, le premier mot est le nom de 1'objet comme tel. Ce mot définit
son comportement. Les mots suivants sont des arguments de création de cet objet et
influencent également, dans une moindre mesure, son comportement. Certains de ces
arguments sont des attributs dont on peut changer la valeur au moyen de messages
spéciaux. On peut savoir comment utiliser un certain objet en consultant sa patche d'aide
au moyen de 'aide contextuelle (un clic droit) et en choisissant d'ouvrir sa patche d'aide.
Les menu « Help » de Max/MSP contient également des tonnes de ressources utiles. Le
bouton « 1 » en bas de chaque patche permet d'ouvrir I'inspecteur, une fenétre qui en dit
long sur 1'objet qui est sélectionné au moment d'appuuyer sur ce bouton. On peut copier-
coller un ou plusieurs objets d'une patch a I'autre, un peu comme dans un logiciel
d'illustration vectorielle.

La plupart des objets qui gerent des messages ont une seule entrée qui, lorsqu'elle recoit
un message, active I'envoi d'un autre message résultant d'un calcul par un de ses sorites.
L'entrée active est celle a 1'extréme gauche, et les autres ne sont pas actives. Elles ne font
que changer les valeur stockées a l'interne par 'objet. Tout les objets ne suivent pas ces
critéres. A la sortie, les messages sortent habituellement de la sortie la plus & droite en
premier, et ensuite des autres. Si plusieurs objets sont connectés a une méme sortie, c'est
celui situé le plus a droite dans la patche qui regoit le message en premier.

Les messages peuvent étre des nombres entiers ou a virgule flottante, des « bang » ou
encore des symboles. (du texte) Il peuvent également étre des listes comportant plusieurs
atomes de I'un de ces types. Les objet de base pour gérer des listes de messages sont
[pack] et [unpack]. Les messages comportant les symboles spéciaux « $1 », « $2 », etc.
peuvent servir au méme genre d'opération que [pack]. Les objets [select] et [route]
servent a rediriger un message selon sa valeur ou celle de son premier atome. L'objet

Q;QSAT[TrOnsForm]

[trigger] permet de séquencer et des convertir le type d'un message vers ses différentes
sorties. Ses sorties sont activées de droite a gauche, tel que I'ordre standard des messages
dans Max/MSP le stipule.

Jitter et les attributs des objets jit.*

Dans Max/MSP, ont détermine le comportement et la valeur des objets au moyen de
messages qu'on leur envoit, ou a des arguments donnés au moment de la création de ces
objets. Les objets de la librarie Jitter ont poussé un peu plus loin ce systéme en utilisant le
concept d'attribut. Les objets ont des attributs qui sont des varibles contenant des chiffres,
des mots ou le nom de ressources a utiliser. Lorsque I'on envois un message commengant
par le nom d'un des attributs d'un objet, on peut changer la valeur de celui-ci. On peut
¢galement donner la valeur initiale des attributs d'un objet en utilisant le charactere @
suivi du nom de l'attribut, puis de la valeur a lui donner.

(@]
Lo ko] o)
\\ /
pak setall 255 255 0 0 grmetro 50 vexpr int($f1*255)

setall 255 25500
setall 255 $1 52 53

print vexpr

jit. matrix matrice 4 char 32 24

b — fex paned jit-cellblock

s 255 255 255
19.91956 255 255 255

fp= 255 255 255

255 255 255

255 255 255

255 255 255

255 255 255

255 255 255

255 255 255

255 255 255

jit.matrix : une matrice de pixels

jit.matrix stocke une matrice de nombres. Elle peut avoir un nombre variable de
dimensions. La derni¢re dimension est appelée "plan". Les matrices Jitter pour les images
ont habituellement 4 plans : “ARGB” : la transparence, le rouge, le vert et le bleu. Les
couleurs sont stockées sous la forme de nombres entiers entre 0 et 255. Chaque pixel est

‘a;vSAT[Tro nsForm]

donc une case comportant quatre plans.

On peut obtenir beaucoup d'informations sur une matrice avec les objets jit.matrixinfo,
jit.cellblock, et jit.fpsgui.

O
El_memsu r]aa:i sjtcp r?tssi qmelm 30 read rate §1

J]'J

j.i.t_.qt.mnui& 320 240 jit gt.movie 320 240
=
jit.scissors @’?I'DWS_"r @EDIUFTS 2_ jlt SCISS0rs @rc:rws 4 {@columns 2

i
r-*"’wﬂ“"

=

Il est possible de combiner des matrices ensemble , de les découper, les recoller, etc.

SAT[TransForm] transform.sat.qc.ca
2008/2009

‘a‘vSAT[TronsForm]
Q
)

gmetro 30 read rate §1)05 |
T] I I

jit.gt.movie 320 240

pak val 0.5

j.it.up i@wop * @val 05

On peut aussi leur appliquer des opération mathématiques.

jit.window : la fenétre

jit.window est la fenétre d'affichage. En I'entourant de quelques objets, (voir sa patche
d'aide) on peut la controler avec la touche ESCAPE. jit.pwindow est une alternative a
jit.window qui peut étre trés utile en phase de développement, car elle est placée a méme
la “patche”.

jit.qt.movie : lire des clips vidéo
jit.gt.movie sert a lire des fichiers quicktime, des images et d'autres types de documents
médiatiques.

SAT[TransForm] transform.sat.qc.ca
2008/2009

‘3‘ SAT[TransForm]
e (o) _ _ (25)
----- v, %elrcﬂﬂ read Stop rate $T %tro 11@ %tmmu -LED—_—J
...... qtmovie 320 240 arurk 15 ;Du-nte-r T5
sl fex sl index $T Gutputmatrix §T

jit.matrixset 16 4 char 320 240 : args: <matrixcount> <planes> <type> <dimensions>

jitwindow world @rect 715 50 1035 290

 type esc to toggle fullscreen. the previous window
: size is still remembered and used for interpolation.

jit.matrixset : enregistrer des boucles vidéo
jit.matrixset sert a capturer des images et a les faire jouer a nouveau. Dans un "matrix

set", on peut stocker une série de matrices. C'est un contenant pour un clip, une séquence
de "frames".

SAT[TransForm] transform.sat.qc.ca
2008/2009

8
a;vSAT[TronsForm]

gmetro 30

j'it'.qt.grab 320 240 arguments <width> <height> <vdevice(optionaljf~
- =
route vdevlist inputlist

L

L
ifer iterr p other|

= = = en close letvdevlist getinputlist
prepend append tclear prepend append | tclgar print i g gp

rab component /

(DV video %] [Built-in iSight & close closes it. YOU MUST
— T EXPLICITLY OPEN THE GRAB
wdevice $1 input $1 COMPONENT IN ORDER TO USE IT.
rl J

settings

fps

jit.qt.grab : capturer les entrées caméra

jit.qt.grab et jit.dx.grab sont les entrées caméra sur Mac et Windows, respectivement.
Cet objet nous donne une matrice a chaque nouveau frame. On peut utiliser avec celui
habituellement un signal provenant d'une caméra par une connection Firewire, USB, S-
Video ou Composite. Il s'agit d'utiliser un pilote qui soit supporté par le systeéme
d'exploitation. Sur Mac OS X, il s'agit de Quicktime, le plus souvent. Sur Windows, c'est
Direct-X qui est le pilote, avec 1'objet jit.dx.grab.

Un signal de caméra peut étre dans le format NTSC ou un autre. Si c'est le cas, le “frame
rate” serait de 29.97 FPS. 1l serait approprié de lire un image a chaque fois qu'il en a une
nouvelle, et donc avec un gmetro a 33.36 ms d'intervalle.

Il ne faut pas oublier de lui envoyer le message “open” si on veut obtenir une image
vidéo. L'objet graphique umenu est un petit menu déroulant qui peut faciliter le choix
d'une caméra pour l'objet jit.qt.grab.

gmetro : le métronome a utiliser avec Jitter

Pourquoi un gmetro plutét qu'un métro ? Le gqmetro a comme un fusible qui I'empéche de
ralentir tout le systeme s'il y a plus de taches a faire que de temps. Il va sauter des
“frames”. Ce “jump cut” est perceptible, et méme désagréable lorsque la scéne rendu
comporte des animations. (déplacement, rotation, juxtaposition et couleur)

SAT[TransForm] transform.sat.qc.ca
2008/2009

9
Q;QSAT[TrOnsForm]

gmetro 25

read start stop

jit.gtmovie 256 256
T -

..............

p esc-fullscreen ‘E_
x i
jitwindow scene @rect 0 100 320 340 @floating 1)

hit esc for fullscreen.

p-ﬂk rm;tex‘,rz-ﬂ. 0.0. jit.gl.render scene @artho 2

50.04217

jitgl.videoplane scene @scale 1.3333 1. 1 @layer 50,

pak position 0. 0. 0

jit-gl.gridshape scene @shape plane @color 1. 0. 0. 1. @scale 0.1 0.1 1. @layer 100

jit.gl.render : le rendu d'une scéne OpenGL
jit.gl.render sert a faire le rendu d'une scéne OpenGL.

OpenGL est un standard de I'industrie des cartes vidéo pour ordinateurs et jeux vidéo. Il
s'agit d'un ensemble de fonctions pour contrdler la forme, les couleurs et les images pour
le rendu d'une scene en trois dimensions. Les sceénes peuvent également étre en deux
dimensions dans le le cas de I'imagerie numérique a partir de séquences vidéo.

L'avantage d'OpenGL est que ce type de rendu utilise les ressources matérielles de la
carte vidéo. (Nvidia ou ATI, par exemple) Ceci libére le CPU (Microprocesseur central)
pour lui permettre d'effectuer d'autres taches durant ce temps. En effet, le CPU est déja
trés occupé avec la lecture de flux vidéo provenant du disque dur ou d'une caméra vidéo.
Le rendu peut étre délégué a la carte graphique.

Les images sont transférées a la carte graphique et y sont stockées sous la forme de
textures. Ces textures peuvent étre appliquées sur des formes. La carte graphique
applique ces images a des formes 3D virtuelles. Comme dans un jeu vidéo. Il peut y avoir
des sources de lumicre, et des formes étranges ou réalistes.

Notez que le signal VGA ou DVI qui va de I'ordinateur a un projecteur numérique a
souvent un taux de 60 Hz. Il en résulte que 60 image par second est une bonne vitesse
pour un rendu OpenGL.

Dans Jitter, tous les objets OpenGL sont associés a un contexte de rendu. On peut les
reconnaitre facilement, car leur nm comment par jit.gl.*. Le premier argument qu'on leur
donne est le nom d'un contexte de rendu sur lequel les dessiner. Ce mot est au choix du
programmeur. La plupart des projets OpenGL avec Jitter ont un seul contexte de rendu.
C'est le premier argument des objets comme jit.gl.render et jit.gl.gridshape. Un contexte

aavSAT[TrcnsForm]

de rendu, c'est une scéne OpenGL.

On peut déterminer l'ordre dans lequel les objets jit.gl.* sont dessinés grace a leur attribut
“layer”. Ils sont dessinés du plus petit au plus grand. L'objet a dessiner en dernier devrait
avoir l'attribut “layer” le plus grand d'un contexte.

jit.gl.videoplane : une forme avec de la vidéo

Dans une chaine de traitement typique OpenGL, les textures sont appliquées sur les
formes 3D selon la couleur de ces formes, et de la lumiére dans le monde tridimensionel,
si celle-ci est activée. On peut ainsi superposer plusieurs images avec une transparence
(alpha) variable. Toutes les couleurs sont en RGBA entre zéro et un. De 0.0 a 1.0.

Les images qu'on applique sur un jit.gl.videoplane sont des matrices. Chaque nouvelle
matrice correspond a un nouveau “frame”.

Les messages “position” et “rotatexyz”
Les objets jit.gl.* peuvent étre déplacés dans l'espace 3D grace a des messages. Le mot-
clé peut étre translatexyz ou rotatexyz, par exemple.

Le secret pour générer des animations fluides est de baser 1'interpolation sur le temps, et
non sur le numéro de “frame”. Ainsi, lorsque le gmetro saute un “frame”, ce n'est pas trop
facilement décelable a l'oeil. Ceci n'est valide que dans le cas des animation 2D et 3D, et
non de la simple vidéo.

jit.gl.gridshape : différentes formes a dessiner

Avec OpenGL, on peut dessiner des formes 2D ou 3D. L'object jit.gl.gridshape permet de
dessiner a I'écran plusieurs sortes de formes. Cercle, carré ou cube : il les plusieurs
formes simples. On peut méme y appliquer une jit.gl.texture provenant d'une caméra
vidéo ou d'une clip. Notez que dans le cas de 1'objet jit.gl.videoplane, il n'est pas
nécessaire d'utiliser une jit.gl.texture avant, alors que dans ce cas-ci, oui.

Il existe plusieurs autres objets pour dessiner dans un contexte OpenGL, comme par
exemple I'objet jit.gl.text3d qui dessine du texte.

1
Q;QSAT[TrOnsForm]

read a movie and start meftro.
; 086 foo

gmefro 20 qmetro 20 read @ start stop
T | | J
tb b erase dim 720 480
T jit.gt. movie 320 240
47.12094
fps
read cf. sobel. jxs
L)
jit.glslab foo @file cf.sobeljxs [10.123 | [p11.]
- -
1 | I
£ read td.sinefold.jxs param freq $1 param amp $1
)] J
i T
jit.gl.slab foo
- -
p esc-fullscreen
jit.glrender foo jit.gl.videoplane foo @scale 1.333 1. 1. jitwindow foo @depthbuffer 1

jit.gl.shader : les shaders

Les créateur de jeux vidéo souhaitent synthétiser des ombres dans leurs jeux. Or, un
rendu OpenGL tient compte automatiquement des sources de lumiére, mais pas de
'ombre qu'un object pourrait porter sur un autre. Pour pallier a cet handicap, des
programmeurs ont pensé a un moyen d'écrire des scripts pour modifier le rendu normal
des couleurs en OpenGL. Ces script sont appelés des “shaders”. 1l s'agit de textes donnant

des instructions a la carte graphique. De nombreux scripts sont disponibles avec Jitter ou
sur Internet.

On peut chainer plusieurs effets shaders sur une méme texture. On peut méme combiner
plusieurs textures selon des formules conditionnelles. Un exemple familier serait I'écran
bleu de la météo a la télé. Il faut faire un calcul, et vite, parce que c'est en direct. On fait
appel a un shader sur la carte graphique plutot qu'a des opérations sur les matrices, qui
serait coliteuses en temps d'exécution sur le processeur central de 'ordinateur.

aavSAT[TrcnsForm]

TRANS
FORM

REFERENCES ET LIENS WEB:

Les tutoriels de la section Jitter de 1'aide de Max/MSP sont la source préférée
d'informations quant a I'utilisation des objets Jitter. Le site web de la compagnie Cycling
'"74 est ¢également riche en informations récentes.

The Max Objects Database
Des patches et des externals
http://www.maxobjects.com/

La page de Max/MSP 5 site de Cycling 74
La ou tout commence...
http://cycling74.com/products/max5

Les forums de la compagnie
Parmi ceux-ci, celui de MaxMSP et celui de Jitter nous intéressent.
http://cycling74.com/forums/index.php

La documentation en ligne de Max S

Les tutoriels vidéo sont excellents. Les tables des matiéres des « MSP Tutorials » et des
« Jitter Tutorials » se trouvent a la droite de I'écran.
http://www.cycling74.com/docs/max5/vignettes/intro/docintro.html

http://www.cycling74.com/docs/max5/vignettes/intro/docintro.html
http://cycling74.com/forums/index.php
http://cycling74.com/
http://www.maxobjects.com/

	Max/MSP Introducion ::
création audio et visuelle en temps réel
	Société des arts technologiques
	 Montréal (Québec) H5B 1C2
	DESCRIPTION DU COURS
	Cours 2 : Introduction vidéo
	Théorie
	Les bases de Max/MSP : objets et messages
	Jitter et les attributs des objets jit.*
	jit.matrix : une matrice de pixels
	jit.window : la fenêtre
	jit.qt.movie : lire des clips vidéo
	jit.matrixset : enregistrer des boucles vidéo
	jit.qt.grab : capturer les entrées caméra
	qmetro : le métronome à utiliser avec Jitter
	jit.gl.render : le rendu d'une scène OpenGL
	jit.gl.videoplane : une forme avec de la vidéo
	Les messages “position” et “rotatexyz”
	jit.gl.gridshape : différentes formes à dessiner
	jit.gl.shader : les shaders
	RÉFÉRENCES ET LIENS WEB:

