
A Word on Safety

• Electronics are toxic to you

• Lead in some of the parts

• Wash up afterwards

• You are toxic to electronics

• Static-sensitive: don’t shuffle your feet

• Wires only bend so much

What is Arduino?

• Open Source Physical Computing Platform

• open source: free to inspect & modify

• physical computing. er, what? ubiquitous computing, pervasive

computing, ambient intelligence, calm computing, everyware, spimes, blogjects, smart objects...

• A physical board, a programming
environment, a development philosophy

• Tiny computer you can program

• Completely stand-alone, talks to other devices

Physical computing as invisible computing
Can run off a battery
Can talk to other computers, cell phones, etc.

What is Arduino?

• Based on AVR-GCC, avr-libc, AVRlib and
Processing (all open source projects)

• Very similar to Basic Stamp (if you know it)

• but cheaper, faster, & open

• Uses AVR ATmega8 microcontroller chip

Basic Stamp uses PIC microcontroller chip.
PICs and AVRs are very comparable, one’s not necessarily better than the other
AVRs are a little better if you’re using a language like C (stack-based)
Don’t need to worry about the chip particulars for now

What is Arduino?

• Why not just use a bare AVR ATmega8 chip?

• Arduino is also a standardized “bootloader”

• A tiny program that loads other programs

• It’s alive during first 5 seconds

A bootloader is akin to an BIOS on a real computer. It handles the startup of the chip
After 5 seconds, your program runs
Don’t need special programmer board with a bootloader
Arduino can work with other AVR chips, some are smaller than your fingernail, cost ~ 40 cents

What is Arduino?

• Capabilities

• 8 kBytes of Flash program memory

• 1 kByte of RAM

• 12 MHz (Apple II: 1 MHz)

• Inputs and Outputs

• 13 digital input/output pins

• 5 analog input pins

Digital I/O can read switches and buttons, control LEDs and motors
Analog input can read knobs or other varying sensors
Analog output can be done with PWM

What is Arduino?

• Write programs on your PC

• Download them into the Arduino board

• Arduino board can then be used by itself

But how do you program it?

No keyboard, mouse or display
Your PC becomes the “head”

Arduino Board

2”

1.7”

reset
button

power
LED

test
LED

TX/RX
LEDs

digital input/output

analog input
Also: USB input, power input, ICSP programming header

Arduino Board

analog inputs

reset
button

power
LED

test
LED

digital I/O

Diagrammatic version, to simplify
But of a slightly older version of the board

Digital? Analog?

• Digital – only has two values: on/off

• Analog – has many (infinite) values

• Computers don’t really do analog

• So they fake it, with quantization
Quantization = breaking up the analog range into bins. The number of bins is the resolution.
More bins = higher accuracy, but is more complex
Digital can be thought of as only two bins.

Arduino Software

compile
(verify)

upload to board

status
area

That’s the full code for blinking an LED, btw.
Arduino defines several useful functions like digitalWrite() and delay(). more on that later
Processing and Wiring not needed

Arduino & Processing
http://processing.org/

build generative art or other applets easily
not needed for Arduino, but can work with it

Arduino has essentially the same GUI as Processing
Easier than Arduino, since all software
Though similar UI and philosophy, Arduino is a different language
We’ll use Processing later in the class to let the computer control Arduino & vice-versa

http://processing.org
http://processing.org

• Download software: http://arduino.cc/

• Mac OS X PPC or Intel (must pick)

• Windows 2000/XP

• Install drivers

• In “drivers” folder, pick appropriate one

• Windows: unzip driver, plug in board, setup

• “macosx-setup-command” for Mac folk

• Reboot

Installing Arduino

Different Arduino downloads for each operating system
Different drivers for each OS too
“macosx-setup-command” must be run before reboot,
but, it will go away in next version

http://arduino.cc
http://arduino.cc

Using Arduino
• Programs are called “sketches”

• Load up example sketch “led_blink”

Errors

Must select
serial port

“Programmer is
not responding”

What’s my serial port?

Windows: Use Device Manager to find COM port
Mac: It’s called “/dev/tty.usbserial-something”

Using Arduino

• Write program

• Compile (check for errors)

• Reset board

• Upload to board

Try it out with “led_blink”!

On reset, board will flash on-board pin 13 LED really fast for a split-second to indicate bootloader
exists
When uploading, TX/RX lights will flash as data is transferred
Then the board resets, pin 13 will flash fast again
Finally, your program will run

Arduino Board Lifecycle

Making Circuits

heart pumps, blood flows voltage pushes, current flows

LEDs

physical characteristics schematic symbol

• LED = Light-Emitting Diode
• electricity only flows one way in a diode

• Needs a “current limiting” resistor, or burns
out

bar = minus

Many types of integrated lenses.
Some project a narrow beam (like the ones in this class), some project a very wide beam

LED flashlight

wiring diagram schematic

All LED circuits are essentially this: power source, current limiter, LED

Flat part of LED goes to negative, like bar in schematic

The higher the resistance, the dimmer the LED; the lower, the brighter

LED flashlight

Take out solderless breadboard, resistor, LED, and battery and make a circuit
LEDs have been marked a little as to what color they are, but color doesn’t matter here

Solderless Breadboards

groups of 5
connected

but not connected
across the jump not

connected

Insert wires into holes to make a connection.
Much easier, quicker than soldering
But, they wear out, are expensive ($8 for this little one)

Blinky LED circuit

wiring diagram schematic

“hello world” of microcontrollers

In schematics signals often flow from top-left to bottom-right
Common nodes like “gnd” are given their own symbol
Pick any digital pin to hook up to, doesn’t matter which

Blinky LED Software

You’ve already seen it.

Arduino Sketch
Structure

• Declare variables at top

• Initialize

• setup() – run once at beginning, set pins

• Running

• loop() – run repeatedly, after setup()

Pins can be changed in loop() too, but conceptually easier in setup()

Arduino “Language”
• Language is standard C (but made easy)

• Lots of useful functions

• pinMode() – set a pin as input or output

• digitalWrite() – set a digital pin high/low

• digitalRead() – read a digital pin’s state

• analogRead() – read an analog pin

• analogWrite() – write an “analog” PWM value

• delay() – wait an amount of time

• millis() – get the current time

• And many others. And libraries. And examples!

Also: serial library, LCD library, servo examples

Development Cycle

• Make as many changes as you want

• Not like most web programming: edit ➝ run

• Edit ➝ compile ➝ upload ➝ run

edit

compile

upload

run

ATmega8 & Arduino

Recap: Blinky LED

Recap: Programming

Reset

Edit Compile

Upload

Digital Input

knife switch toggle switch
(SPST) (SPDT)

Switches make or break a connection

Most inputs you’ll use are variations on switches

Fundamentally, they’re all like the simple knife switch
Single pole = only one circuit is being controlled
Double pole = two circuits are being controlled at once
Single throw = only one path for circuit
Double throw = two potential paths for circuit

Digital Input

• Switches make or break a connection

• But Arduino wants to see a voltage

• Specifically, a “HIGH” (5 volts)

• or a “LOW” (0 volts)

How do you go from make/break to high/low?

HIGH

LOW

Switch to Volts:
Positive Logic

“pull-down”

• Digital inputs can
“float” between 0 and
5 volts

• Resistor “pulls down”
input to ground (0
volts)

• Pressing switch sets
input to 5 volts

• Press is HIGH
Release is LOW

Don’t want “pull-down” to be too small, or it uses a lot of current

Switch to Volts:
Inverted Logic

• Resistor pulls up
input to 5 volts

• Switch sets input
to 0 volts

• But now the sense
is inverted

• Press is LOW

• Release is HIGH “pull-up”

Inverted logic like this is common in microcontrollers

Arduino Digital Input

• Add switch circuit to any digital input (except pin 13)

• For output, use either existing pin 13 LED or
wire up your own

Arduino Digital Input

Output is on-board pin 13 LED for now
Using the fact that two of the switch leads are connected.
Also, notice color coding. Blue is ground, purple is signal
But pin 13 LED is underneath! So gotta take a peak.

Making Jumper Wires
• strip off about 1/2” of insulation

• Can use wire strippers, cutters, or fingers

• Can be a pain, so I have some pre-cut wires

Analog Input

• Many states, not just two (HIGH/LOW)

• Number of states (or “bins”) is resolution

• Common computer resolutions:

• 8-bit = 256 states

• 16-bit = 65,536 states

• 32-bit = 4,294,967,296 states

Analog Input

• Arduino (ATmega8) has six ADC inputs

• (ADC = Analog to Digital Converter)

• Reads voltage between 0 to 5 volts

• Resolution is 10-bit (1024 states)

• In other words, 5/1024 = 4.8 mV smallest
voltage change you can measure

Analog Input
Sure sure, but how to make a varying voltage?

With a potentiometer. Or just pot.

+5V–
measure–

gnd–

Color coding: red goes to power, blue to ground, purple to ‘measure here’ (it’s a mix, see?)

Potentiometers
Moving the knob is like moving

where the arrow taps the voltage on the resistor

And that’s actually how it works, btw, if you take apart a pot.
But I might have the directions reversed (clockwise vs. anti-clockwise).

Sensing the Dark
• Pots are example of a voltage divider

• Voltage divider splits a voltage in two

• Same as two resistors, but you can vary them

Sensing the Dark:
Photocells

• aka. photoresistor, light-dependent resistor

• A variable resistor

• Brighter light == lower resistance

• Photocells you have range approx. 0-10k

schematic symbol
Pretty cheap too. Can get a grab bag of 100 misc from Jameco for $20

Photocell Circuit

pin A0

gnd

Vcc

Looks a lot like the pot circuit, doesn’t it?

Photocell Arduino
Sketch

Can use as before, sketch “analog_read_led”

Wave your hand over it = blink faster
Point it towards the light = blink slower

Change to 0

Just like magic!
If circuit was configured the other way (photocell on bottom), then darkness would make it blink
slower.

Communicating
with Others

• Arduino can use same USB cable for
programming and to talk with computers

• Talking to other devices uses the “Serial”
commands

• Serial.begin() – prepare to use serial

• Serial.print() – send data to computer

• Serial.read() – read data from computer

Can talk to not just computers.
Most things more complex than simple sensors/actuators speak serial.

Watch the TX/RX LEDS

• TX – sending to PC

• RX – receiving from PC

• Used when programming
or communicating

(and keep an eye
on that pesky

pin13 LED too)

Arduino Communications

• Psst, Arduino doesn’t really do USB

• It really is “serial”, like old RS-232 serial

• All microcontrollers can do serial

• Not many can do USB

• Serial is easy, USB is hard

serial terminal from the olde days

is just serial communications

Serial Communications

• “Serial” because data is broken down into
bits, each sent one-by-one on a single wire:

‘H’
= 0 1 0 0 1 0 0 0
= L H L L H L L L

=
LOW

HIGH

• Toggle a pin to send data, just like blinking an LED

• Only a single data wire is needed to send data.
One other to receive.

Note, a single data wire. You still need a ground wire.

Arduino & USB-to-serial

USB to serial

Arduino

microcontroller

Arduino board is really two circuits

Original Arduino boards were RS-232 serial, not USB.

Arduino to Computer
Arduino boardLaptop

USB to serial
Arduino

microcontroller

USB to serial
driver

Arduino
programmer

Processing
sketch

Java program

RX

TX

-OR-

-OR-

-OR-
...

USBTX

RX chip

USB is totally optional for Arduino
But it makes things easier

Original Arduino boards were RS-232 serial, not USB.

Pulse Width Modulation

• More commonly called “PWM”

• Computers can’t output analog voltages

• Only digital voltages (0 volts or 5 volts)

• But you can fake it

• if you average a digital signal flipping
between two voltages.

• For example...

PWM

0 volts

5 volts

50% 50% 50% 50% 50%

2.5 Volts

0 volts

5 volts

20% 80%

1.0 Volts

50%

20% 80% 20% 80%

0 volts

5 volts

75% 25%

3.75 Volts

75% 25% 75% 25%

output_voltage = (on_time / off_time) * max_voltage

Output voltage is averaged from on vs. off time

PWM
• Used everywhere

• Lamp dimmers, motor
speed control, power
supplies, noise making

• Three characteristics of
PWM signals

• Pulse width range (min/max)

• Pulse period
(= 1/pulses per second)

• Voltage levels
(0-5V, for instance)

width

period

height

Controlling Arduino

• Any program on the computer, not just the
Arduino software, can control the Arduino
board

• On Unixes like Mac OS X & Linux, even the
command-line can do it:

demo% export PORT=/dev/tty.usbserial-A3000Xv0
demo% stty -f $PORT 9600 raw -parenb -parodd cs8 -hupcl -cstopb clocal
demo% printf "1" > $PORT # rotate servo left
demo% printf "5" > $PORT # go to middle
demo% printf "9" > $PORT # rotate servo right

Unix is rad.

Arduino PWM

• Arduino has built-in PWM

• On pins 9,10,11

• Use analogWrite(pin,value)

• It operates at a high, fixed frequency
(thus not usable for servos)

• But great for LEDs and motors

• Uses built-in PWM circuits of the
ATmega8 chip -» no software needed

why all the software, doesn’t Arduino have PWM?

The PWM speed used for analogWrite() is set to 30 kHz currently.
When programming AVRs, PWM speed can be set to just about any value.

R,G,B LEDs

Arduino
board

pin 11

gnd

pin 10

pin 9

220 (red,red,brown) or

330 (orange,orange,brown)

red green blue

Three PWM outputs and three primary colors.
Just screams to be made, doesn’t it?

With RGB you can
make any color

(except black)

Put back on the ProtoShield for this.
Use either the 220 or 330 ohm resistors in your kit, if you don’t have enough of one or the other
I have lots more 220 if you need them

R,G,B LEDs

Cut leads of resistors and LEDs to make for a more compact circuit.
Also, less likely to short against itself.

External Power
Arduino can run off USB power or external power

USB connectorExternal power connector

jumper switch to choose power source

voltage
regulator

External Power
You can use an AC adpater

Make sure it’s
“center positive”

Connector is
standard barrel

connector

Voltage can be
9-15 V DC

Amps is > 200mA

center
positive

Actually input voltage can be from like 7.5V to 35V, but don’t go over 15V so the voltage regulator
doesn’t have to work so hard.

External Power

also solves polarity concerns

An easier way to connect a battery

Power connector input has protection diode.
Also it’s easier with the connector

External Power
Battery life

How long does Arduino last on 9V battery?

• Arduino board draws about 40 mA by itself

• Each LED adds about 20mA when on

• Each servo maybe 100 mA when running

• Switches, pots, etc. are effectively zero

• Battery capacity rated in milliamp-hours (mAh)

• 9V batteries have about 400 mAh capacity

Thus, Arduino by itself lasts 400/40 = 10 hours
Take all your power, add it up, divide it into your battery capacity to get time in hours.
There are techniques to make an AVR chip go into sleep mode, and draw microamps (1/1000 mA),
but those techniques don’t have nice Arduino-style wrappers yet.
For more on batteries and their capacities: http://en.wikipedia.org/wiki/List_of_battery_sizes

Getting started with

 arduino

 Written by Massimo Banzi.
 With materials written by Massimo Banzi, Erica Calogero,
 David Cuartielles, Jeff Gray, Tom Igoe, David Mellis and Cristian Nold.
 Illustrations by Elisa Canducci.

BETA Vers
ion

/ analogue inputs

 As we have seen in the previous section Arduino is able to detect if there is a voltage
applied to one of its pins and report it trough the digitalRead function. This is fine in
a lot of applications but the light sensor that we have used before it’s also able to tell us
not just if there is light or not, it’s also able to tell us how much light there is. This is
the difference between an on/off sensor (simply telling us if something is there or not)
and an analogue sensor whose value continuously changes. In order to read this type
of sensors we need a different type of pin. In the lower-right part of Arduino you’ll see
6 pins marked “Analog In”, these are special pins that not only can tell us if there is
a voltage applied to them or not but also it value. By using the analogRead function
we can read the voltage applied to one of the pins. This function returns a number
between 0 and 1023 representing voltages between 0 and 5 volts. For example if there
is a voltage of 2.5 volts applied to pin 0 writing analogRead(0) will return 512 etc etc.

 If you now build the circuit that you see in the illustration by using a 10k or 4.7k
resistor and you run the piece of code you find here you’ll see the led blinking at a rate
that’s dependent on the amount of light that hits the sensor.

34

31

28

/ the breadboard

 The process of getting a circuit to work is largely based on making lots of changes
to it until it behaves properly; it’s a very fast iterative process that could be seen as
the electronic equivalent to sketching. The design evolves in your hands as you try
different combinations. In order to achieve the best results you want to use a system
that will allow you to change the connections between components in the fastest, most
practical and non-destructive way.

 This requirement clearly rules out soldering, it’s a time consuming procedure that puts
every component under stress every time you heat them up and cool them down.

 The answer to our problems comes from a very practical device called “Solder-less
Breadboard”.

 As you can see from the picture it’s a small plastic board full of holes, each one of
them contains a spring-loaded contact. You can push a component’s leg into one of
the hole and it will establish an electrical connection with all the other holes in the
same vertical column of holes. Each hole is at a distance of 2.54 mm distance from
the others, since most of the components have their legs, known to techies as pins,
are spaced at that standard distance therefore chips with multiple legs will fit nicely.
Not all the contacts on a breadboard are created equal, there are some differences: the
topmost and bottom row (coloured in red and blue and aptly marked with + and -) are

25

/ what is electricity

 If you have ever done any plumbing at home, electronics won’t be a problem for you

to understand. Jokes aside, in order to understand how electricity and electric circuits
work the best way is to build a mental model called the “water analogy”. Let’s take a
simple device like a portable fan,

 if you take it apart you will see that it contains a small battery a couple of wires going
to an electric motor and one of the wires is interrupted by a switch. Now makes sure
you have a new battery fitted in the device and activate the switch; the motor will start
to spin providing the necessary refreshment. How does this work? Well imagine that
the battery is a water pump and the switch is a tap while the motor is one of those
wheels you see in watermills, when you open the tap water will flow from the pump
and push the wheel into motion.

 Now in this simple hydraulic system two parameters are important: the pressure of the
water (this is given from how powerful is the pump) and the amount of water that will
flow in the pipes (this depends from the size of the pipes and the resistance that the
wheel will oppose to the stream of water hitting it).

26

 You quickly understand that if you want the wheel to spin faster you need to increase
the size of the pipes (but this works only up to a point) and increase the pressure that
the pump can achieve. Increasing the size of the pipes allows more flow of water to go
through them, effectively by making them bigger we have reduced the resistance they
oppose to the flow of water. This works until a certain point where the wheel won’t
spin any faster because the pressure of the water is not strong enough and this is when
we need the pump to be stronger.

 This can go on until the point when the wheel falls apart because the water flow is
too strong and destroys it. Another thing you will notice is that as the wheel spins the
axle will heat up a little bit, this is because no matter how good is the way we have
mounted the wheel the attrition between the axle and the holes it is mounted in will
generate heat. This is important to understand that in a system like this not all the
energy you pump into the system will be converted into movement, some will be lost
in a number of inefficiencies and will generally show up as heat emanating from some
parts of the system.

 So what are the important parts of the system as we described it before? The pressure
produced by the pump is one, the resistance that the pipes and wheel oppose to the
flow of water and the actual flow of water (let’s say that this is represented by the
number of litres of water that flow in one second) are the others.

 Without going into much details electricity works a bit like water, you have a kind of
pump (any source of electricity like a battery or a wall plug) pushes electric charges
(imagine them like “drops” of electricity) down pipes represented by the wires where
some devices are able to use them to produce heat (your grandma’s thermal blanket)

27

light (your bedroom’s lamp) sound (your stereo) movement (your fan) and much
more.

 So when you read on a battery 9V you can imagine the Voltage of the battery like the
water pressure that can be potentially produced by this little “pump”. This is measured
in Volts from Alessandro Volta, the inventor of the first battery.

 The flow of water has got and electric equivalent called “current” that is measured
in Amperes from Andre Marie Ampere. Finally the resistance opposed to the flow of
current by any means it travels through is called, yes you guessed right, resistance and
it’s measured in Ohms from the German physicist Ohm.

 Mr ohm is also responsible for coming up with the most important law in electricity
and the only formula you will really need to remember.

 He was able to demonstrate that in a circuit the Voltage, the Current and the
Resistance are all related to each other and in particular that the resistance opposed by
the circuits determines the amount of current that will flow through it give a certain
supply voltage.

 It’s very intuitive if you think about it: Take a 9V battery and plug it into a simple
circuit while measuring current, you will find that the more resistors you add to the
circuit the less current will travel through it. Going back to the water flowing in pipes,
given a certain pump if I place a tap (which we can assimilate to a variable resistor in
electricity) the more I close the tap, increasing resistance to water flow, less water will
flow through the pipes. Mr Ohm summarised his law into this formulas:

 R (resistance) = V (voltage) / I (current)

 V = R * I

 I = V / R

 This is the only rule that you really have to memorise and learn to use, because in most
of your work this will be the only one you will really need.

29

connected horizontally and are used to carry the power across the board so that when
we need power or ground we can provide it very quickly with a short jumper (this is
not a sweater or a funny insect but a short piece of wire used to connect two points
in the circuits) The last this you need to know about breadboards is the in the middle
there is a large gap that is as wide as the size of a small chip. This shows that the each
vertical line of holes is interrupted in the middle so that when you plug a chip you
won’t short circuit pins that are on the two sides of the chip, clever eh?

9

/ patching

 Robert Moog built his analogue synthesizers in a modular fashion and the musician
could try endless combination by “Patching” together different modules with cables.
This made the synthesizer look like an old telephone switch but, combined with the
numerous knobs, was the perfect platform for tinkering with sound and innovating
music. This technique has been translated into the world of software by programs like
Max or Pure Data.

10

/ circuit bending

 Circuit bending is one of the most interesting forms of tinkering.
 It’s the creative short-circuiting of low voltage, battery-powered electronic audio

devices such as guitar effects, children’s toys and small synthesizers to create new
musical instruments and sound generators. The heart of this process is “the art of
chance”. It began in 1966 when Reed Ghazala by chance, shorted-out a toy amplifier
against a metal object in his desk drawer, resulting in a stream of unusual sounds.

2

 Thanks

 The Arduino team is composed of:
 Massimo Banzi, David Cuartielles, Tom Igoe, David Mellis and Gianluca Martino.

 The Arduino team would like to thank the following people and institutions for the
support in making this booklet:

 Aliadi Cortelletti for typesetting the booklet.

 Barbara Ghella, Stefano Mirti, Claudio Moderini.

 Interaction Design Lab, Milano
 Domus Academy, Milano
 Interaction Design Institute, Milano
 Malmö University, Faculty of Art, Culture and Communication (K3)

 This booklet is released under a Creative Commons License:
 Attribution-NonCommercial-ShareAlike 2.5

 You are free:
 * to copy, distribute, display, and perform the work
 * to make derivative works

 Under the following conditions:
 * You must attribute the work in the manner specified by the author or licensor.
 * You may not use this work for commercial purposes.
 * If you alter, transform, or build upon this work, you may distribute the resulting

work only under a license identical to this one.
 * For any reuse or distribution, you must make clear to others the license terms of this

work.
 * Any of these conditions can be waived if you get permission from the copyright

holder.
 http://creativecommons.org/licenses/by-nc-sa/2.5/deed.en

	arduino_spooky_projects_class1.pdf
	arduino_spooky_projects_class2.pdf
	arduino_spooky_projects_class3.pdf
	arduino_spooky_projects_class4.pdf
	Arduino_booklet02.pdf
	LivretArduinoFr06.pdf

